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A theory of nematic ordering and microphase segregation in an incompressible melt of AB
diblock copolymers is developed for the case when the A block is a polymer composed of Nj4
monomers and the B block is a main-chain liquid crystal polymer composed of Ng freely jointed
nematogens. Isotropic monomer-nematogen interactions are characterized by a Flory parameter yx,
and anisotropic nematogen-nematogen interactions are characterized by a Maier-Saupe parameter
J. Long chains (N4, Ng > 1) in the strong segregation limit (x¥ > 1, with N = N4 + Npg)
are considered. An approximate free energy of the melt is given for the following segregation
morphologies: homogeneous, lamellar, cylindrical micelles, and spherical micelles. The free energy
is minimized to determine the equilibrium morphology, lattice constant, and degree of nematic order
as a function of x", J, and N4/N. Both morphological and isotropic-nematic transitions occur,
and the ordinary diblock copolymer phase diagram is significantly altered.

PACS number(s): 61.25.Hq, 61.30.Cz, 64.70.Md, 64.75.+¢g

I. INTRODUCTION

A polymer is called a diblock copolymer if it con-
sists of two subchains (or blocks), one containing type-A
monomers and the other type-B. Typically, if the tem-
perature is sufficiently low, a melt of AB diblock copoly-
mers spontaneously segregates into A-rich and B-rich do-
mains. The linkage between A and B blocks precludes
macroscopic phase segregation and leads to interesting
microscopic ordering—called microphase segregation—
on a scale of the radius of gyration of the polymer.

Over the past twenty years, the theory of microphase
segregation in AB diblock copolymers has been exten-
sively developed [1-3]. If a polymer molecule is modeled
as a chain of freely jointed segments, with N4 type-A
segments and Np type-B segments, and if both types of
segments have the same length, then mean field theory
predicts a phase diagram like Fig. 1, where N is the to-
tal number of segments per molecule (N = N4 + Np),
fa is the fraction of each molecule which is type-A
(fa = N4a/N), and x describes the degree of incompati-
bility of A and B segments (x ~ 1/T where T is temper-
ature). When temperature is sufficiently high (x N < 10)
the melt is homogeneous (no segregation) for all values
of fa; when temperature is sufficiently low (N > 1,
the strong segregation regime) one of three segregation
morphologies—lamellar (parallel planes), cylindrical mi-
celles, or spherical micelles—appears, depending on the
value of f4. Experiments confirm the general features of
this phase diagram for many diblock copolymer materials
(4]

In this paper, we calculate a phase diagram analogous
to Fig. 1 for the case when the A block is an ordinary
polymer, and the B block is a main chain liquid crys-
tal polymer (LCP) composed of a freely jointed chain of
rigid-rod segments which are capable of nematic order-
ing. We will refer to this material as a polymer-LCP di-
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block copolymer, or P-LCP for short. In such a material
one expects to observe both morphological and isotropic-
nematic transitions. The Semenov theory of microphase
segregation [3] successfully describes morphological phase
boundaries in the strong segregation regime, and gives a
reasonable estimate of the order-disorder phase bound-
ary (see Fig. 1). The Maier-Saupe theory of liquid crys-
tals [5] successfully describes the isotropic-nematic tran-
sition. We will combine the Semenov and Maier-Saupe
theories in order to describe P-LCP’s. We will consider
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FIG. 1. Diblock copolymer phase diagram showing equi-
librium morphology (homogeneous H, lamellar L, cylindrical
micelles C, spherical micelles S) versus type-A fraction fa
and incompatibility parameter x/N. Solid curves are an exact
solution of mean field theory [7]; dotted curves are Semenov’s
results [3].
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long molecules (N4, Ng > 1) in the strong segregation
limit (xN > 1), and will also assume x <« 1, which
is typical of most pairs of polymers. Thus we will take
N>xN>1.

Williams and Halperin [6] recently published a theo-
retical study of a P-LCP for the case of a LCP with
finite rigidity—a so-called semiflexible chain. In their
model the splay elastic energy of the LCP is a dominant
term in the free energy, particularly at low temperatures
when the LCP becomes rodlike. In our model the P-
LCP has zero rigidity—a freely jointed chain—and splay
elastic energy can be neglected (see the Results and Dis-
cussion section). Our model includes three effects which
Williams and Halperin exclude: (i) corrections to the mi-
celle surface free energy due to the presence of nematic
order; (ii) the possibility that the interior of a micelle
can be composed of either polymer or LCP; (iii) and the
possibility that the isotropic-nematic transition can oc-
cur at a higher temperature than the segregation transi-
tion. These differences between the models lead to very
different phase diagrams. Also, the analysis for a freely
jointed chain is simpler and more surveyable than that
for a semiflexible chain.

II. THEORY

We assume the melt has one of the following morpholo-
gies: homogeneous (d = 0), lamellar (d = 1), cylindrical
micelles (d = 2), or spherical micelles (d = 3), where d
is the morphological order parameter. Let R be the ra-
dius of a cylindrical or spherical micelle, and let L/2 be
the radius of the concentric unit cell. (The assumption
of a cylindrical or spherical unit cell is an approxima-
tion, since such cells are not space filling. At the level of
this approximation we do not distinguish between various
ways of packing micelles [3,7]). For convenience we de-
fine a lamellar “micelle” as an infinite slab parallel to the
lamellae containing one ... BAAB... section of thickness
L, and define the lamellar “radius” R as the distance
from the center of the AA region (the center of the mi-
celle) to the AB interface. For d = 1,2,3 we consider
only the strong segregation regime, where segregation is
nearly complete and the interfacial thickness (the region
of AB junctions) is small compared to the micellar lattice
constant L.

Regard each molecule as a freely jointed chain of N
segments, where the first N4 segments are monomers
and the remaining Np segments are nematogens. We
assume the monomer and nematogen segments both have
the same statistical segment length ¢, defined such that

R? = N¢2/6, (1)

where R is the (hypothetical) radius of gyration of a
chain in the absence of segment-segment interactions. We
also assume the chains are very long (N4, Np > 1); in
this limit our results will be independent of N.
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A. Order Parameters

Let R + r be the distance from the center of a mi-
celle, where 7 is a radial coordinate defined so that »r = 0
corresponds to the micelle’s surface and r = —R corre-
sponds to the micelle’s center; for the homogeneous mor-
phology the coordinate r is irrelevant; for a lamellar mi-
celle “radial” means “perpendicular to the lamellae.” Let
¢4(r) and ¢p(r) be the volume fractions of monomers
and nematogens at r and impose the incompressibility
constraint

¢a(r) +¢p(r)=1. (2)
Introduce the segregation order parameter
_ (o%) - f3
h= fafs ®)
where
fa=TA = (ga),
fB=—3r=B)=1-fa 4)

are the overall fractions of type-A4 and type-B material in
the melt, and the angle brackets denote spatial averaging.
The definition of h and the incompressibility constraint
imply

(6%) = fa — (dadB) ,
(¢%) = fB — (dadB) ,
(padB) = (1 —h)fafs. (5)

The segregation order parameter h ranges from zero for
a homogeneous melt to unity for complete segregation.
In the strong segregation regime h ~ 1, so we let

0
= {8

be the (approximate) segregation order parameter asso-
ciated with morphology d. We also introduce the micelle
order parameter

{0
9=11

which indicates whether the micelles are formed of
monomers or nematogens. For homogeneous and lamel-
lar morphologies we define g = 0. The subscripts in and
ez will be used to denote the material type (A or B) in
the interior (r < 0) or exterior (r > 0) of a micelle: if
g =0 thenin - A and ex — B; if g = 1 then in —» B
and ex — A.
Finally, introduce the nematic order parameter

_ /3@ -a)?-1
- (2, 0

where @ is the unit vector along a nematogen and the
angle brackets denote a thermal average over all nemato-
gens. In writing this expression for s we make two simpli-

ifd=0
ifd=1,2,3, (6)

if micelles are type A (7)
if micelles are type B ,
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fying assumptions: the local nematic director i always
points along the coordinate r, so that i = #; and s is
independent of r. We discuss these assumptions in the
Results and Discussion section. Note that s ranges from
zero for an isotropic distribution to unity for complete
nematic ordering.

B. Free Energy

First consider the free energy of the segregated mor-
phologies (d = 1,2,3) in the strong segregation regime.
It is convenient to decompose the free energy into four
components:

FIZP‘AB*'FBB*_Fgrad'*—Fconf- (9)

where F' is the free energy per chain, Fsp and Fpgp
are internal energies due to monomer-nematogen and
nematogen-nematogen interactions, Fgraq is a surface
tension term which depends on (V¢ 4)? and (V¢g)?, and
Font is a configurational entropy term due to stretching
and nematic ordering of the chains.

From the Flory-Huggins theory of phase segregation
the internal energy per chain due to isotropic monomer-
nematogen interactions is [8]

Fap = TxN{¢adB) . (10)

and from the Maier-Saupe theory of nematic ordering the
internal energy per chain due to anisotropic nematogen-
nematogen interactions is [5]

Fop = — JTINS*($%) = ~ STINS (fo — (9a5)
(1)

Here T is temperature (in energy units), and the inter-
action parameters x and J are both positive and vary
(approximately) as 1/T. Adding the internal energies
together we find

- 1
Fap + Fpp = TXN{pa¢B) — §TJNstz, (12)
where

X=x+ %Jsz (13)
is the effective x for the P-LCP system, incorporat-
ing both Flory-Huggins and Maier-Saupe interactions
[9]. The product ¢a¢p is nonzero only in a thin re-
gion |r| < R about the micelle surface, so we neglect the
curvature of the micelle surface and write

+o0

wmw:m/ dr $a(r) $5(r) . (14)

— 00
where

d
Ag =dR%! (%) (15)
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is the ratio of micelle surface area to unit cell volume.
The density gradient contribution to the free energy
per chain is [3,10]

_ AJTNE [ (Va)® (V¢B)2>
Fgrad = 24 < ¢A + b5
2 +o0 2
_ AJTNE o (doa/dr)® (16)

24 oo 041 —d4)

where we again neglect curvature of the micelle surface.
Equations (12)—(16) imply

Fup + Fgp + Fgraa

+oo 22 (dopa/dr)’ ;
= A4TN dr | ——27 0
d [x r (24¢A(1 ~éa) + X¢A¢B‘
1 2 _—

The minimal value of the integral is Z\/;Z/iﬁ, correspond-
ing to the distribution [3]

o1 — T
({)A(T) = é -+ —2- tanh(\/ﬁx?) R (18)

so, in equilibrium,

R 1
FAB+FBB+Fgrad :2Tcdg\/ X~N—L“ - 5TJNfBS2.

(19)

where C4q is defined in Egs. (30) below, and we have used

the fact that R = filn/dL/2 in an incompressible melt.

The configurational entropy of a chain with its AB
junction at 7 = 0, type-A free end at 7 = 74, and type-B
free end at r = rp is (see Appendix)

S = Sms + Sstr (20)

where
3 1 .
SmMms :NBD[gJS:l - iNBJS(szrl) (21)

is the Maier-Saupe orientational entropy of the nematic
portion of the chain [5],

2 3.2
3ry 3rg

_ _ 22
Ptz N4 2Ntk (22)
is the entropy reduction due to chain stretching [11],
1 2
Diz] = ln/ dye®r . (23)
0
1 2
3 [ dyvy2e®”
Qfz] = fo—l(:j? -
Jo dve

and
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=0, (24)
%= Q[ng] 2,

where £p is the effective segment length for the random
walk of the nematic portion of the chain in the £ direction.
The free energy associated with Sys is —T'Sums, and the
free energy associated with S, is obtained by minimizing
—T Sgir over all distributions of chains consistent with the
incompressibility constraint, which gives [3]

TN in
(=T Setr) = Vf (Uo + Uh) , (25)
d
where
w2 gRIt+2
Uo = — 57 -
320’inlvin
ﬂKde+2
= 26
Ul 4angi2n ) ( )
2
=4
e2
azB = ?B ) (27)
and
Al—_-%y Kl—%(fi%—l), V1—2R,
A =1, n2=%ln(f‘ln) , V, = nR?
g = 42 ra=3(1-£) Vs=4R3
(28)

Equations (20)—(28) imply

Fconf _ Adg Bdg L ?
T (Q[g.]sg] * n[ng(1—g)]> (§>

+ %JNst(zs +1) — NfgD [gJSJ o (29)

where
-A00=12, Boo=13’ Coo =0,
Ao =igfa,  Bu=1i5fp, Go=t,
Azo = 3"—8242 ) Byo = & In(1/f4) , Cao=2f/",
A2 = &5, By = & In(1/f8) , 021=2f1/2v
3824 -1/3 64 -1/3 g/3
Aszo = gfa ', 330=4_ls(f,4 —1), Coo=3f,",
M L1ys 1 ,¢-1/3 2/3
Asi =g Ban=g5(fp" —1), Ca1=3f5".

(30)
Equations (19) and (29) give for the total free energy

A (n[§3ig] * A —gn) ()
e (3
+%JNst(s+1) - NfBD[ng] .
(31)

Minimizing with respect to L gives, in equilibrium,

<E> — 3¢c%/3 _Agy
T) =123 de Q[%J‘qg]

1/3
+ 55 [ng(l —g)]) (V)

+ %JNfgs(s +1) — NfB’D[ng] ,
(32)
and

— C1/3 Adg + Bdg
9 \Q[2ssg]  Q[EUs(1-g

-1/3
~ A\1/6
)]) (XN)77 .

(33)

L
R

Now consider the free energy of the unsegregated mor-
phology (d = 0). The gradient and stretching terms are
no longer applicable, and the dilution of the nematogens
requires that J be replaced by Jfg. Then Egs. (12) and
(21) give

(F)  =xViafo + 3INfats+0),
d=0

—NfBD |::—;-Jfas:| . (34)

Finally, combine Eqgs. (32) and (34) to get a single
expression valid for all d:

1/3
F 2/3 Aag Bag ~An1/3
— = 3h4C N
T~ T (Q[%Jsg] T Qs -g)] (e

+(1—hq)xNfafs
+ 3 INf(hafa+ f5)s(s +1)

—NfsD|2I(hafa + f)s| - (35)
2

This is our central result. One can minimize F/T with
respect to d, g, and s to determine the equilibrium mor-
phology and degree of nematic order, and then calculate
L/R from Eq. (33).

We are interested in the case N > xN > 1. Then the
values of d, g, and s which minimize F/T depend only
on fa, xN, and J, and the task of minimizing Eq. (35)
is quite simple. The key thing to notice is that the last
two terms dominate for large IV, and that they represent
the Maier-Saupe free energy with an effective interaction
parameter J(hqfa + fB). The critical value of the inter-
action parameter in Maier-Saupe theory is 4.541 [5], so
for J > 4.541 and hgy = 1 the Maier-Saupe free energy
is negative (with s nonzero), and for J < 4.541 it is zero
(with s zero) independent of hy. Thus, for J > 4.541
the melt segregates (hq = 1) and becomes nematic (s
assumes its ordinary Maier-Saupe value, corresponding
to J), the second term of Eq. (35) is zero, and the first
term dictates which of the segregated morphologies gives
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the overall lowest free energy; for J < 4.541 the melt is
isotropic (s = 0), the last two terms of Eq. (35) are zero,
and the first two terms reduce to Semenov’s free energy.

III. RESULTS AND DISCUSSION

Phase diagrams derived from Eq. (35) for the case N >
xN > 1 are shown in Fig. 2 where we plot equilibrium
morphology versus fa and xN for several values of 7,
where

J

=N (36)

n

Both xN and J vary as 1/T, so 7 is independent of tem-
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perature. In the phase diagrams, moving upward along
a line of constant f4 corresponds to reducing temper-
ature. When n = 0 the Semenov results of Fig. 1 are
reproduced, with phase boundaries at f4 = 0.13, 0.28,
0.72, and 0.87. For > 0 an isotropic-nematic transition
occurs at J = nxN = 4.541. Once the nematic transi-
tion occurs, the melt is necessarily segregated for all f4:
in this sense the nematic transition drives segregation.
As x N increases beyond the isotropic-nematic transition
the phase boundaries approach f4 = 0.02, 0.16, 0.58, and
0.68. For xN > 1 radially nematic spherical micelles can
constitute up to 32% of the volume of the melt.

Figure 3 shows the relationship between s and J, which
is the same as in Maier-Saupe theory [5]. There is a first
order isotropic-nematic transition (s jumps from zero to
0.429) at J = 4.541.
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FIG. 2. Diblock polymer-liquid-crystal-polymer phase diagrams showing equilibrium morphology (homogeneous H, lamellar
L, cylindrical micelles C, spherical micelles S) and micelle composition (polymer P, liquid crystal polymer LCP) versus polymer
fraction fa and incompatibility parameter x N for several nematic interaction strengths n = J/(xN). In (a) n = 0 and there
is no nematic ordering; in (b) n = 0.1 and there is an isotropic-nematic transition at y/N =~ 45: in (c) 7 = 0.5 and there is an

isotropic-nematic transition at xN >~ 9.
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FIG. 3. Nematic order parameter s versus nematic inter-
action parameter J. Note the first order isotropic-nematic
transition at J = 4.541.

Figure 4 is a plot of the lamellar period versus J, calcu-
lated from Eq. (33) with N = 1000, xN = 50, fa = 1/2,
and s[J] as in Fig. 3. (The equilibrium morphology is al-
ways lamellar for f4 = 1/2.) Note the abrupt increase in
the period when the melt becomes nematic. The ratio of
the nematic period to the non-nematic period is 2 when
J ~ 6 (s ~ 0.75); the ratio is 3 when J ~ 40 (s ~ 0.97).

Chains in the interior or exterior of a micelle are
stretched radially [3]. Nematic ordering reduces the free
energy cost of stretching the B subchain along the ne-
matic director. This justifies our assumption that i = ¥,
since it is the configuration of minimum free energy.
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FIG. 4. Lamellar period L/R versus nematic interaction
parameter J for N = 1000, f4 = 1/2, and xN = 50. The
period increases abruptly with the onset of nematic order,
and continues to increase gradually as the extent of nematic
ordering increases.
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In the expression for the internal energy due to
nematogen-nematogen interactions [see Eq. (11)] we ne-
glect the free energy cost due to splay. The splay free
energy density goes as (V - fi)?, so, given that fi = f, the
splay free energy per chain goes as In(R)/R? and 1/R?
for cylindrical and spherical micelles, respectively [12].
But R ~ R ~ V/N, so in the limit of large N the splay
free energy per chain goes to zero. Since the splay free
energy is negligible there is no significant coupling of s to
r, which justifies our assumption that s is independent
of r. (Note, however, that for the case of a semiflexible
LCP Williams and Halperin [6] have shown that the splay
free energy becomes important as temperature is lowered,
since the entire LCP block tends to become rigid.)

The expression for Fyraq [see Eq. (16)] assumes the
random walk behaviors of the A and B subchains are
identical, which is not correct when the B subchain is
nematically ordered. When s = 1 the effective segment
length for the B subchain’s random walk in the # direc-
tion is v/3¢, not £. Helfand [13] has shown how to cal-
culate interfacial free energy when £4 # f{p: he replaces
them with the effective value

io? (M) ,
3\ -1
It is possible to incorporate this correction into our model
by multiplying C44 by the factor

3 3/2
(s =2 (——(”[5‘%’3]) ‘) .

3\ Q[3Js]-1

(37)

(38)

Since the value of {[z] ranges from 1 to 1.4 as = goes from
0 to oo, the corrections are small, and we have chosen
to neglect them. Furthermore, ([z] does not depend on
morphology, and in the limit of large N it has no influence
on phase boundaries.

In conclusion, the phase diagram for a melt of P-
LCP reveals an interesting interplay of morphological and
isotropic-nematic transitions. The onset of nematic order
increases the micelle lattice constant by roughly a factor
of two. Radially nematic spherical micelles can consti-
tute up to 32% of the volume of the melt. These results
may be of interest in the field of polymer dispersed liquid
crystals.
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APPENDIX: CONFIGURATIONAL ENTROPY

Consider a single chain with its AB junction at r = 0,
type-A free end at 7 = r 4, and type-B freeend at r = rp.
The partition function for the B subchain is
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Z = /dﬁl/dﬁz...]dﬁNB o—B(Bla1]+Elfz]+-+E[an])

x8[rp — € - (G; + G2 + -+ - + 0N, )] , (A1)
where 8 = 1/T and
Lay2
Eld] = -TJs (?.@.3%.:.1) (A2)

is the Maier-Saupe energy of a nematogen in the mean
nematic field characterized by the order parameter s and
director #. If we use the form

1 +oo )
8lx] = — / dk e***

oy (A3)

— 00

for the é function, and assume r < Ngf and N > 1,
the expression for Z can be integrated [14]:

3 1/2 1 Np
~ $Jsy?
Z“—(2”A%33) (A e )

1 3ry
xexp(— é—JNBs — 2NB[25> .

(A4)

where £p is defined in Eq. (24). The internal energy of
the B subchain in the mean nematic field is

Ngp(E[l])) = -TJNps*. (A5)

so, neglecting terms of order In Np, the configurational
entropy of the B subchain is

31‘23
2N3Z23 ’

3 1
SB ZNBD[iJS} — 5JNBS(2S+1) - (Aﬁ)

where D is defined in Eq. (23). The corresponding con-
figurational entropy of the A subchain may be obtained
by replacing B with A and letting J = 0:

2
3ry

N —
A 2N A%

(A7)

Then the configurational entropy of the entire chain is
S=854+SB.
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